
SCM518 TeamD6 Programmer: Yu-Ling Hsiao
 Team Members: Cainan Parrish, Vijaya Mummidi, Keval Mehta

Final Project Technical Walkthrough
Using Google API and Gurobi in Python

Part I - Obtain distance data using Google Distance Matrix API

Introduction to API

Before getting started, make sure to sign up for Google Maps Platform, enable Google Distance Matrix

API1, and get an API key (This will be used later). To see the set up these things, check out this website:

Get Started with Google Maps Platform

Google Distance Matrix API is a service that provides travel distance and time for given origins and

destinations based on the recommended route. To use it, simply request a URL that contains the origins,

destinations, and API key. The request takes the following form:

https://maps.googleapis.com/maps/api/distancematrix/json?units=imperial&ori
gins=ORIGIN&destinations=DESTINATION&key=API_KEY

The red-colored words are subject to change. ORIGIN and DESTINATION are whatever the start point

and end point you wish to put in, API_KEY is your unique credential.

The response will be either in JSON or XML format based on the parameter you pass, which includes

route related data like duration, distance, and fare. These results need to be parsed if you want to

extract desired values.

For more information about other optional parameters you can pass or how to parse the results, visit

this website: Developer Guide

Usage in our project

Here are the example datasets after wiping out sensitive personal information.

(Click here for the complete client data file)

Client Number Age City Sex Zip Cross Streets Demand

1 69 Chandler F 85286 Germann & McQueen 1

2 62 Chandler F 85225 Cooper & Chandler 4

3 86 Chandler F 85249 McQueen & Riggs 1

4 80 Gilbert F 85297 Germann & Power 2

5 81 Chandler M 85226 Chandler Blvd & Rural 1

(Click here for the complete volunteer data file)

Volunteer ID City Cross Streets Zip

1 Chandler Pecos & McQueen 85225

2 Chandler Pecos & McQueen 85225

3 Tempe 202 & Rural 85281

4 Tempe Warner & Priest 85284

5 Chandler Gilbert-Riggs 85249

1 Fees may apply. To understand the price or get free credit, go to the following website:
https://developers.google.com/maps/documentation/distance-matrix/usage-and-billing

https://developers.google.com/maps/gmp-get-started
https://developers.google.com/maps/documentation/distance-matrix/intro
https://arizonastateu-my.sharepoint.com/:x:/g/personal/yhsiao16_sundevils_asu_edu/EfEZyHlydIhHrdzcMO4QZEsBHGPQg8ZCfRJ_Ruf7aNDl5g?e=mWYBjt
https://arizonastateu-my.sharepoint.com/:x:/g/personal/yhsiao16_sundevils_asu_edu/Ea3iCiQKTdBMqgUQ41hq7b4BoYmF-YUJQtbzcQXKm34dqQ?e=f86DYk
https://developers.google.com/maps/documentation/distance-matrix/usage-and-billing

Since the distances between 180 volunteers and 335 clients were not provided, I chose to use Google

API to gather them or it would take too much time searching manually.

In consideration of the privacy, though the company gave us complete address information of the

personals, our team decided to use only the zip code to locate them. As a result, there would be a lot of

duplicates because many people live in the same zip code area. In order to save time, avoid unnecessary

efforts, and reduce the number of requests, we remained only unique zip code pairs of volunteers and

clients for querying distance data.

(Click here for the unique zip code file)

Firstly, I constructed an empty table which in the headers of row and column represents volunteers’ and

clients’ zip code. Then I filled in the distance (in miles) by requesting API with the row headers as origin

and column header as the destination. Here is the example of the distance table:

(Click here for the distance code file) (Click here for the complete distance matrix file)

85286 85225 85249 85297 85226 85224 85233 85298 85234

85225 3.9 1 6.2 9.2 9.8 4.5 3.6 12.2 7.8

85281 19.1 16.2 21.4 24.4 14.4 12.3 13.7 27.5 16.3

85284 11.6 8.6 13.9 16.9 4.3 4.7 8.3 20 16.2

85249 4.2 6.2 1 10.1 11.8 10.4 9.5 7 16.6

85224 8.2 4.5 10.5 13.5 7.3 1 5.2 16.5 10

85142 15.6 18 12.3 10.2 24 22.6 21 7.5 18.5

85248 5.8 7.9 3.4 11.7 9.8 8 11.1 8.9 18.7

85234 13.3 8.4 16.7 8.7 19.6 10.3 5.4 11 1

85226 9.7 9.8 12 15 1 7.4 12.2 18 20.2

Then, I populated the distance data into the 355×180 table which the row headers represent volunteers’

number and column headers represent clients’ ID. Here is how it looks like:

(Click here for the volunteer and client distance code file)

(Click here for the complete volunteer and client distance matrix file)

(Equation 2)2

1 2 3 4 5 6 7 8 9

1 3.9 1 6.2 9.2 9.8 1 4.5 3.6 3.6

2 3.9 1 6.2 9.2 9.8 1 4.5 3.6 3.6

3 19.1 16.2 21.4 24.4 14.4 16.2 12.3 13.7 13.7

4 11.6 8.6 13.9 16.9 4.3 8.6 4.7 8.3 8.3

5 4.2 6.2 1 10.1 11.8 6.2 10.4 9.5 9.5

6 8.2 4.5 10.5 13.5 7.3 4.5 1 5.2 5.2

7 15.6 18 12.3 10.2 24 18 22.6 21 21

8 11.6 8.6 13.9 16.9 4.3 8.6 4.7 8.3 8.3

9 5.8 7.9 3.4 11.7 9.8 7.9 8 11.1 11.1

This complete distance table (defined as “matrix” in the code in part II) between each volunteer and

client will be used in our Gurobi model.

2 The Equations in this doc indicate the parts that link to the corresponding equations in the mathematical model.

https://arizonastateu-my.sharepoint.com/:x:/g/personal/yhsiao16_sundevils_asu_edu/EZvmBxYYJrhIvIZLVqmF1JIBHhKCC2j0xgchtHCH-4T9QA?e=dvJI9a
https://arizonastateu-my.sharepoint.com/:u:/g/personal/yhsiao16_sundevils_asu_edu/EaxidMTdoq9JmYMwm_6wuhgBz5TN5KbkJ6o4fYn7VLHtfg?e=eLfo0l
https://arizonastateu-my.sharepoint.com/:x:/g/personal/yhsiao16_sundevils_asu_edu/EfL_PWXw8fZNuvz71mg1HjYB6iITk-jJ5YxBMvdcsClX4Q?e=sdsRd0
https://arizonastateu-my.sharepoint.com/:u:/g/personal/yhsiao16_sundevils_asu_edu/Ebusdk1kiglHncllIq7zziYBBaOveKTHKmiY3lOb_0ebvg?e=iqFbpg
https://arizonastateu-my.sharepoint.com/:x:/g/personal/yhsiao16_sundevils_asu_edu/EaTHPxK2n0FAiRoJbCwOoWMBLZlNeSCDVCk1jOtndx2tEQ?e=Ggptdu

Part II – Use Gurobi to build model and solve problem

Introduction to Gurobi

Gurobi is a powerful optimization solver and compatible with many platforms and programming

languages. In this tutorial, I will be using Anaconda (An analytics platform powered by Python) with the

Gurobi library. Users need to have both Anaconda and Gurobi installed, and get a Gurobi license as well.

To see how to prepare for the environment, follow this link: Gurobi and Anaconda

The model set up in Gurobi is similar to the mathematical model. Below are the 5 main components:

1) Initialize an empty model object

model = gurobipy.Model()

2) Add decision variable to model

decision = model.addVar()

3) Set the optimization objective

model.setObjective()

4) Add constraints to model

model.addConstr()

5) Optimize the model

model.optimize()

For the actual parameter settings and mathematical model implementations, refer to this link: Gurobi

Python Documentation

Usage in our project

Besides the distance data I obtained in part I, we also need the demand of every client in the model. This

is a portion of demand data (Defined as “demand_list” in the code) (Equation 1):

Client Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Demand 1 4 1 2 1 5 5 2 1 1 5 1 1 2 1 2 1 1 1 2

Next part, I will explain the actual codes step by step and show the corresponding mathematical

equation.

(Click here for the Gurobi code file)

1) Initialize an empty model object

model = gp.Model()

2) Add decision variable to model (Equation 3, Equation 8)

Just like the distance data, the decision variables are defined as a 355×180 table data in which

the rows represent volunteers and columns represent clients. Here, the value type is set to

integer.

decision = model.addVars(matrix.shape[0], matrix.shape[1],
name='decision', vtype='I')

https://www.gurobi.com/get-anaconda/
https://www.gurobi.com/documentation/9.0/quickstart_windows/py_python_interface.html
https://www.gurobi.com/documentation/9.0/quickstart_windows/py_python_interface.html
https://arizonastateu-my.sharepoint.com/:u:/g/personal/yhsiao16_sundevils_asu_edu/EdjPW1VRsPpPq4GLgKsjrBgBhJR4FdFZCHTPIAw9rEegzg?e=VlBbNl

3) Create distance dictionary for every volunteer and client pair

The meaning of this step is to create a searchable collection (distance) recording every volunteer

and client pair and its associated distance.

distance = {}

for i in matrix.index:

 for j in matrix.columns:

 distance[(i - 1, int(j) - 1)] = matrix.iloc[i - 1, int(j) - 1]

4) Set the optimization objective (Equation 4)

The first line is to sum the decision variables multiply distance for each volunteer and client pair,

and set this as the objective and aim to find the minimum optimal value.

objective = decision.prod(distance)

model.setObjective(objective, GRB.MINIMIZE)

5) Add constraints to model (Equation 5, Equation 6, Equation 7, Equation 9)

The first one makes sure the client demands are met. The following two limit the number of

visits a volunteer performs should between 1 and 4. The last one indicates the decision variables

must not be negative.

for c in matrix.columns:

 model.addConstr(decision.sum('*', int(c) - 1) ==
demand_list['Demand'][int(c)])

for r in matrix.index.values:

 model.addConstr(decision.sum(r - 1, '*') <= 4)

 model.addConstr(decision.sum(r - 1, '*') >= 1)

for i in decision.values():

 model.addConstr(i >= 0)

6) Optimize the model

model.optimize()

If you want to access the values of objective and decision variables, apply the first and second line of

code respectively below.

model.objVal

model.getVars()

The response list of getting variables function (getVars) may need to be further processed to extract the

values to the desired format. The first below can get the variable’s name and the second can get the

value (i is position in the list).

model.getVars()[i].varName

model.getVars()[i].x

After successfully processing the python code, we got 1685.3 miles as the optimal objective and arrived

with the result of decision variables.

Below is a small snippet of the result (This is modified to show both the scenarios):

(Click here for the complete result file)

 Client Number

Volunteer

ID

 1 2 3 4 5 6

1 0 0 3 0 0 0

2 2 0 0 0 0 0

3 0 1 0 0 2 0

4 0 0 0 0 0 4

5 0 0 0 1 0 0

6 0 0 0 1 0 0

In the above matrix, 0 represents that the volunteer is not assigned to the corresponding client, whereas

the cells in green show the number of visits between each volunteer and client.

https://arizonastateu-my.sharepoint.com/:x:/g/personal/yhsiao16_sundevils_asu_edu/EQe4h2Tx2hFPu_q4-A5p3N0BeZxXxo1LM7Iy0b8pwcUVAw?e=pDLwLG

Appendix

Mathematical Model

Parameters:

i= Client

j= Volunteer

𝑉𝑖: Visits needed by client i in a month Equation 1

𝐷𝑖𝑗: Distance between client i and volunteer j Equation 2

Decisions:

𝑋𝑖𝑗: Number of visits made by volunteer j to client i Equation 3

Objective:

Minimum Total Distance: ∑ ∑ 𝑋𝑖𝑗 ×𝑗𝑖 𝐷𝑖𝑗 Equation 4

Constraints:

∑ 𝑋𝑖𝑗 =𝑗 𝑉𝑖, ∀𝑖 (Visits needed by clients should be meet) Equation 5

∑ 𝑋𝑖𝑗 ≤𝑖 4 (Volunteers should have at most 4 visits) Equation 6

∑ 𝑋𝑖𝑗 ≥𝑖 1 (Volunteers should have at least 1 visit) Equation 7

𝑋𝑖𝑗 ∈ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 (Number of visits should be integer) Equation 8

𝑋𝑖𝑗 ≥ 0 (Number of visits should be positive) Equation 9

